Şirketler makine ve üretim bilgilerinden daha fazla yararlanmak için neler yapıyor?
Veri Bilimi projesi yaklaşımı: hazırlık, analiz ve uygulama geliştirme, değerlendirme, bakım
Endüstriyel Veri Bilimi yeni bir disiplindir. Bu nedenle, her şirket için uygun olan genelgeçer bir yaklaşım (hâlâ) yoktur. Mümkün olan en iyi sonucun elde edilmesi için çözüm ve uygulamaların her birinde özelleştirilmiş veri analizi ve modelleme gerekir. Bununla birlikte, standart bir yaklaşımın benimsenmesi yararlıdır. CRISP-DM modeli (Cross-Industry Standard Process for Data Mining), en yaygın şekilde benimsenmiş olan temel yaklaşımdır. OMRON, CRISP-DM’yi basitleştirip uyarlayarak yeni bir yaklaşım geliştirdi. Bu yaklaşımda dört adım bulunuyor: hazırlık, analiz ve uygulama geliştirme, değerlendirme, bakım. Bu aşamalar hakkında daha fazla bilgiyi infografikte bulabilirsiniz.
1. Aşama: Hazırlık
Hazırlık aşaması, en önemli aşamadır. Hedefin net olmadığı bir veri bilimi projesi asla başarılı olamaz. Bu nedenle, bu önemli ilk adımda tüm katılımcılar ve alan uzmanları, net olarak tanımlanmış bir proje hedefine ulaşmak için öncelikle sorunu veya belirli gereklilikleri ele alır. Hangi verilerin mevcut olup hangilerinin toplanması gerektiği hakkında genel bilgi elde etmek için makineyi ve/veya üretim sürecini ayrıntılı bir şekilde analiz ederler. Bu süreçte, fizibilite çalışması olarak ilk veri kümesi toplanıp analiz edilebilir. Hazırlık aşamasının sonunda, oluşturulması beklenen değer ve gerçekçi ROI hakkında bilgi veren bir rapor oluşturulur.
2. Aşama: Analiz ve uygulama geliştirme
- Veri toplama: Veriler, ham sensör verilerinden MES sistemlerinin sunduğu bilgilere uzanan çeşitli kaynaklardan toplanır.
- Verileri ön işlemeden geçirme: Toplanan veriler analiz adımı için hazırlanır, dönüştürülür, birleştirilir ve temizlenir.
- Veri analizi: Geliştirilmiş analiz algoritmaları ve makine öğrenimi modelleri uygulanır.
- Uygulama: Veri analizinden elde edilen çıkarımlar ve sonuçlar sunulur. Duruma, hedef gruba veya makineye göre uyarlanan ya da makine için geri bildirim olarak hazırlanan görselleştirmeler örnek olarak gösterilebilir.
3. Aşama: Değerlendirme
Uygulama, üretim ortamında kullanılıp işle ilgili sonuçlar ve performans değerlendirilir. Performans, beklentileri karşılamıyorsa önceki proje aşamaları tekrar gerçekleştirilir.
4. Aşama: Servis ve Bakım
Üretim süreçlerinin yanı sıra makine davranışı da zaman içinde sürekli olarak değişebilir. Bunun olası nedenleri arasında güncelleme ya da aşınma ve yıpranma yer alır. Bu nedenle, gerçekçi bir şekilde işe yaradığından ve değerini koruduğundan emin olmak için çözüm düzenli olarak yeniden doğrulanmalıdır. Ayrıca kullanılabilir veri miktarı da artmakta olduğu için daha iyi modeller geliştirmek genellikle mümkündür. Sonuç olarak, mevcut modellerin (makine öğrenimi modelleri) düzenli olarak incelenmesi gerekir.
Kullanışlı bir örnek olarak SMT hattı
Veriye dayalı bir çözümde karmaşık makine öğrenimi modellerinin veya yapay zekanın yer alması her zaman için zorunlu değildir. Bazen verilerin etkili bir şekilde işlenmesi ve doğru bilgilerin doğru zamanda doğru yöntemle sağlanması da yeterli olabilir. Ücretsiz olarak indirilebilen “Omron’un Veri Bilimi Hizmetleri – Fabrika üretim verilerinizin tamamından faydalanma” adlı güncel raporda, bu türden veri bilimi projelerinin açıklayıcı bir örneği bulunabilir. Omron Manufacturing of Netherlands (OMN) fabrikasında hayata geçirilen proje için elektronik komponentlerin, baskı devre kartlarına (PCB) monte edilip lehimlendiği yüzey montajı teknolojisi (SMT) hatları kullanıldı.
Yalnızca en yaygın çözümlerin potansiyeli tam olarak geliştirilebilir
Kendi üretim ortamınızda Büyük Veri potansiyelini geliştirmek, kolay olmasa da çabanızın karşılığını alabileceğiniz bir süreçtir. Yalnızca veri toplayıp birkaç grafik oluşturmak yeterli değildir. Verilerden üretimle ilgili bilgileri süzüp doğru hedef kitleye doğru şekilde sunmak gerekir. Önemli olan, verileri faydalı bilgilere dönüştürmektir. Bu işlem, veri bilimi uzmanları ile üretim sürecindeki uzmanlar arasında yakın iş birliği kurularak yapılmalıdır. Popüler olan, sık kullanılan ve uzun vadeli değer oluşturan bir çözüm ancak bu şekilde geliştirilebilir.